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Coupled-field description of zero-average dispersion management
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Using a coupled-field formalism and a standard perturbation analysis, we analyze a dispersion-managed
system under zero-average dispersion conditions. A nonlinear integral equation in the spectral domain allows
the determination of the critical strength parameter of a two-step dispersion map. Higher-order correction terms
confirm the difference observed in the pulse shapes in each fiber and comparisons with fully numerical results
reveal a good agreement. The existence of an antisymmetric dispersion-managed soliton is also confirmed.
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[. INTRODUCTION simple, its nonlocality leads however to a nontrivial coupled-

field description of dispersion management. Our analysis

The possibility of upgrading, at a reduced cost, alreadyshows that, at the leading order, the spectrum of the DM
installed standard fiber communication systems by havingoliton obeys a nonlinear integral equation whose solution
recourse to the technique of dispersion management has ragn Serve, for one, to extract the value of the critical param-
idly attracted a great deal of attentifh2]. Reduction of the ~ ©€7Ser- The next order of perturbation implies a difference
Gordon-Haus jittef1—3] and the four-wave mixing crosstalk " the pulse profiles at the midpoint of each fiber segment
between the different channels of a wavelength-division—and this is well confirmed by the numerical simulations.

multiplexed systeni4] are among the noteworthy features of More generally, the comparison with fully numerical results
. oo reveals an excellent agreement. The analysis also confirms
this approach. However, the optimization of future

. ) . : : . he prediction based on another appro concerning the
dispersion-managed links still requires further numerical an% P Ppropis] 9

analytical modeling, as the so-called “dispersion-manage xistence of a.mntlsym.metndDM soliton.

(DM) soliton” revee'lls unusual properties when comparedf. The haper 15 orga}nlzed'as follows. In Sep. Il a coupled-

with the conventional nonlinear Scitiager (NLS) soliton ield description of dispersion management is mtroduced._ln
. . : " the absence of exact analytical solutions, a perturbative

In particular, as discussed by various gro(ips12], a DM

soliton can sustain stable propacation in a zero- or normaenalySiS is then carried out in Sec. lll, leading to a nonlinear
: ; . propag . ., __Integral equation for the spectral distribution. The results are
average dispersion link, as long as the “map strength” pa

. > ‘discussed and compared with numerical simulations in Sec.
rameter is above some critical valGg [13]. A wavelength- b

division-multiolexed communication tem is likely t IV. The solution of the integral equation is shown to allow
slon-muftiplexed communication system IS Kely 10 o getermination of the critical parametgy, and the exis-

operate in both anomalogs anc_;l normal dispersion regimet%nce of an antisymmetric DM soliton is pointed out. A gen-
and the zero-average dispersion case can, therefore, lg?

viewed as an important frontier deserving further investiga- al discussion concludes the paper.
tion. This is the subject of this paper. Il. COUPLED-EIELD DESCRIPTION

In the linear limit, under total dispersion compensation,
the evolution of the intensity profile of the pulse is identical We consider a two-step dispersion méfg. 1) which
in both fiber segments of a two-step dispersion map. Thigonsists of the periodic alternance of two fiber segments of
suggests that a perturbative approach, based on the definitiég@ngth L; (j=1,2) and dispersion parameteis,;(3,;
of two dependent variables, one of them involving the smal<0,8,,>0). Considering a zero-average dispersig3;(
difference between the envelopes of the pulses in each fiber — B2,L,), the propagation in the anomalo@srst) and
might prove fruitful. To exploit this observation, we then normal(second fiber segments is described by the nonlinear
introduce in this paper hilocal change of variables which is Schralinger (NLS) equation:
reminiscent of a similar approach used thoroughly in the aU, 142U,

context of the quantum Hall-effect subject to a point contact i — 4+ 2+ |U,y2U,=0 (18
and in the Kondo model as well 4,15, where it is referred dz; 2 ot ’
to asfolding. Although this change of variables may look 5 d
L1 Lo Ly
o) > - - - 7
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;Y2 1‘92U2+ U,|2U,=0 1b
'a_zz_iﬁz_ r|U,|°U,=0. (1b)

The scaled variableg;=Z;/Lp; represent the propagation
distances in terms of the local dispersion lengtbg;
=T(2)/|B2j|, T, being a characteristic time scale<@;<I,
wherel = L1/LD1= L2/LD2. The timer is in units of Ty and

the fields are expressed in terms of the peak amplitude of the

conventional NLS soliton that would propagate in the
anomalous fiber. The ratio=(y,L5)/(y,L1) has been intro-
duced, wherey, , is the nonlinear parameter of the fibers.
We restrict the present analysis to the lossless case.
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#+(z=0)=Uo, (5a)

b (2=l [1+exg(—i6)] . 55
¥ (z=0)=0, (50)
¢7(2=I)=wUS- (5d)

The symmetric caser 1) has received particular attention
in the numerical work published so far. For this reason, and

sidual uniform nonlinear phase shiff the pulse profile is

Eq. (4), we first investigate that case. We briefly discuss of

perfectly reproduced after each period of the map. Furtheithe case #1 in the conclusion.
more, the phase profile of the field is uniform at the midpoint

of each fiber; without loss of generality, we then impose a

real field atz,=1/2 (this is further validated below The
governing Egs(1a), (1b) then imply that the fields satisfy
the following continuity and periodicity conditions:

U1(z:=0,7)=Uq(7), (29
Ui(z;=1,7)=Ug(7), (2b)
Uy(z,=0,7)=U4(z,=1,7)=Ug(7), (20

Uy(zo=1,7)=expi §)U(z,=0,7)=exp(i )Uy( 7).
(2d)

The phase shift) can be viewed as a signature of the non-
linearity. Noting that in thdinear limit (§=0) the fields in
each fiber are simply related by3(z,=z,7)=U1(z;
=z,7), we then introduce, with a perturbative treatment in
mind, the following change of variables:

Ui(z,7)=U%(z,7)
> }

p-(z,7)= )

We note an alternative interpretation of this transformation
since, in the same linear limit),(l —z,7)=U3(z,7), this

; 0=0+e6,+&0,+ .

IIl. PERTURBATIVE ANALYSIS

To our knowledge, there is no exact analytical solution of
the system(4), (5) that is of any relevance for the present
analysis. However, in the regime of strong dispersion man-
agement, the dispersion dominatéscally) over the nonlin-
earity. This implies that, typically, the amplitude is small,
|Ug|<1, and this then suggests a perturbative analysis in
terms of a small parameter, e.g4=|Ug ma2. For this pur-
pose, we defines. =\eV. andUy=eV,, with V. and
V, of order unity; we will return to the original variables
later on. Equatior(4) (with r=1) is then appropriately re-
written as

IV
! 0z

. 1 9%V,
2 978

+e(|V2|2Vo+2|V. |2V +VAVE)=0.
(6)

We can now proceed with a standard perturbative analysis
and expand the fieldg.. and the phase shift as

V. (z,7)=V(z,1)+eV¥(z,7)+e?Vi(z,7)+" -,
(7a)

(7b)

change of variables is strictly equivalent to a folding of the(The zero-order phase shift has been set to zero so as to fall
first half of the map onto the second half and this evokes #ack on the correct linear limjt.The boundary condition

similar technique used for analyzing quantum impurity prob-

lems[14,15. In these problems, the folding is allowed to

uncover the integrability of the governing systems and this

(58, combined with Eq(74a), then implies

V0:V+(Z:O)EVOO+8V01+82V02+'" . (7C)

was not so clear in the original formulation. Here, thethis simply expresses the fact that the pulse profile at the
coupled system does not seem to be integrable althougfher junction, in the stationary state, is also power depen-

some conserved quantities can be folihd].

The new set of variables makes it possible to analyze thg,

dent. We limit the present investigation to the termsin At
e leading order, the system is governed by the following

problem in terms of two fields coupled over the commonqa, homogeneous equations:

domain 0<z<I:

e 1Py 1
i ——+ 5~ == 5[y + 2]y Py

+PE P (LD (Y=Y
+2| g P+ gt

with the associated boundary conditions

(4)

VY 1V
"z T2 92 70 ®
subject to the boundary conditiofiead off Eq.(5)]:
VP(0)=Veo;  V(D=Vio,
v@)=0; VvOI=o. 9)
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It proves convenient to solve E¢B) in the spectral domain.

For this purpose, we introduce the Fourier transfdr(w)
= [h(7)exp(—i2mv7)dr. Then,

VO(zv)=0,

O (z,vy=exd —i272v%(z—112)1¢(v), (10)
where ¢(v) represents the spectrum f®) at the midpoint
z=1/2. At this order, the propagation is linear aady real
function ¢(v) will ensure that the boundary condition
VO (1)=V®"(0) is satisfied. The selection appears at the
next order where the equations to be solved read as

VP 1PV
" T2 O (113
v 1 v
i 4z — — _|\y(0)]2y,(0)
| 97 +2W |V+|V (11b)
with the boundary conditiongead off Eq.(5)]:
(1) (1) * 01 *
Vi(0)=Vo1; Vi (I):V01_|7V00,
(1) (1) 01,
VZ(0)= VE(D =15 Voo (12

By inspection, one finds that the first-order correction to the

field V, is given, in the spectral domain, by
V() 010
Vi (z,v)=—|ZVJr (z,v)

=—i %exq—i2w2v2(z—ll2)]go( v). (13

S0, V1= —i(61/4)Vqo. Still in the spectral domain, the in-
homogeneous Ed11b) yields

Pzn=1-

Xexd —i2m

2V2<z—|/2)]j f dv,dv,

v eXF{i47TZV1V22] -1

— 22
ivs exg —i2m viv,l]
Xe(vtv)e(vtwv)e(vtritry), (14

where we have used the fact thatis a real function. A
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sin 272
J f dv.d VZM(I)(V-F v)D(v+vy)
XD (v+vi+vy)=AP(v), (153
where® = \/e ¢ represents, at the leading order, the spectral

profile of the fieldsU, , at z; ,=1/2. The eigenvaluex is
simply related to the nonlinear phase shift by

0

Hence#, the nonlinear phase shift incurred over one period,
appears as a natural choice of parameter for characterizing a
particular stationary DM soliton.

Equation(15), combined with Eqs(10), (13), and (14),
allows the description of the fields in each fiber. We are
particularly interested in the pulse profile at the midpoint of
each fiber and at their junction as well. Keeping termsin
in the spectral domain these profiles are given by

(i) in the middle of the firstanomalougfiber segment

Uy(z=112,0)=D(v)+I(v), (16)
where
y)s%f f dvldvzl_czojzzl:lzlzlyﬂ(I)(v-l-vl)
XD (v+ 1) (v+ v+ vy); (17)
(ii) in the middle of the seconthorma) fiber segment
Ux(z,=112,0)=(1+i6/12)D(v)—I(v), (183
=exp(+i6/12)D(v)—I(v);
(18b)
(iii) at the junction
Ui(v)=U04(2y=0,0)=U0%(2,=0,v)
=(1—i6ld)exp +imlv?)D(v), (193
=exp( —i0l4)exp(+im?l v?)D(v).
(19b)

On physical grounds, the change16/2)—exp(6/2) in
Eqg. (18b [and similarly for Eq.(19b)] is expected to im-
prove the accuracy of the approximate analysis as it correctly
implies that the first-order correction due to the nonlinearity
mostly consists in a phase shift and, from symmetry consid-
erations, the latter should be half of the total shift incurred
over one complete period. This is well confirmed by the
numerical results reported below.

IV. DISCUSSION AND NUMERICAL EXAMPLES

compatibility condition arises when one wants to satisfy the Equations(15)—(19) call for a few comments. First, we

boundary condition forv*)(1) [Eq. (12)]. This condition
translates into the selection of a particular solutiprior a

note that the nonlinear integral equatidb) is equivalent to

the recent result of Ablowitz and Biondihl8] who based

limited se} expressed mathematically in terms of a nonlineartheir analysis on the method of multiple scald®]. We
integral equation. Coming back to the original variables, thebelieve that besides being rather straightforward for analyz-
latter reads as ing the stationary state, the present analysis also has the ben-
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FIG. 2. (a) Spectral distribution®(») corresponding to the ei-
genvaluex =0.019(see texk (b) Same aga) but on a logarithmic
scale. The parameters g8g,= — 8,,= 10 pg/km; L;=L,=80km
and the nonlinear phase shiftds- 0.24. The frequency is in units
of 1/T,.

FIG. 3. Temporal distributiongJ| (a) and|U,| (b) at the mid-
point of each fiber for the cas@=0.24. The predictions of the
perturbative analysi&doty are compared with the exact numerical
results based on Eql) (solid lineg. The timer is in units of T.

i i o i characterized by thesame strength parameter$(=S;).
efit of easily providing expressions for the next order of per-gince this order of approximation corresponds to the quasi-
turbation.  This higher-order — correction ~demonstratesjinear fimit, this implies that in the diagram of the pulse
according to Eqs(16). and (18), the nonImeanty-mduced energyE vs S, the corresponding points approach Saxis
asymmetry observed in the evolution of the pulse in the WQyertically at a value representing the critical parame@yr (
fibers. =S,=S,). In the zero-energy limittotal absence of nonlin-

Second, one can notice that H36) correctly predicts a o5y effecty any pulse profile is perfectly reproduced after
real field at the midpoint of the anomalous fiber, as assumegd, ., period: in other words, any point on Baxis is then a

in the derivation of Eq(15). Equation(18), however, implies ¢, tion. Introducing a small nonlinearityE¢0) leads to
a small npnuniformity of the phase profile at the center of thgy,o selection of a particular point on temxis located a8,
second fiber. A proper inclusion of higher-order terms wouldg, 4 the latter, in this sense, can be viewed as a bifurcation
remedy this. _ o point. The impact of the nonlinearity generally depends on
Third, as pointed out by Ablowitz and Biondifl8], EQ.  {he puise shape and it is only for a particular pulse profile
(15 obeys a scaling rule: if, for a given normalized length ¢ the path-averaged interplay between dispersion and non-
l;,@4(v) is & solution of Eq(15) with an eigenvalue\s, |inearity simply results in a uniform phase shift of the pulse
then a new parameterl;=al, will yield ®3(»)  gpectrum after each periotFurther discussion on the physi-
::3‘1;1(\/51’) as a solution, with the eigenvalua,  ca| interpretation of the critical parameter can be found in
=(B“la)\y, B being an arbitrary factor. The phase shifts Ref. [10].) To determine the value of the critical parameter,
associated with these two solgt|ons are then relatedby e solved the integral equatiafl5) numerically, using an
=B%6,, the full width half maximum(FWHM) of the tem- jterative scheme with a proper renormalization step to ensure
poral intensity distribution at the midpoint of the anomalousg quick convergence to the solutigfurther details will be
fiber 71, by (7119) 2= V(712)1 and the pulse enerdyscales  given elsewhere The FWHM of the temporal intensity dis-
as E,=(B%\a)E;. In terms of the so-called map tribution, given by the square of the Fourier transform of
strength parameter S, here equal t0S=2|B,L,/75, ®(v), implies a critical valueS,=3.76. [This is in good
=2I(To/7y2)? [this parameter was introduced by Smith agreement with the approximate value of 3.9 reported by
et al. [1,8,10 and the reader is referred to that work for a Bernstonet al. [8,13,20 and apparently extrapolated from
discussion of its physical meaning; in the present symmetripurely numerical results—based on Hd)—obtained for
case, one can notice that it is directly related to the ratidow, but finite, energy. We also note that the fact that the
(fiber segment lengif{dispersion lengthand thus gives an strength parameter involves the square of the inverse of the
idea of the importance of the linearly induced pulse broad~WHM makes it strongly dependent on the pulse shaps.
ening in each fibdr this scaling law implies that, at this pointed out in Sec. V, this value does not depend on the ratio
order, the solutions corresponding to different energies are.
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FIG. 4. Temporal distribution at the junction of the fibers for the N
casef=0.24 () amplitude profile|U; (b) phase profilea uni- U |°-3°
form phase has been removed at the pulse cerfae predictions 2 020 L ":"2'8233
of the perturbative analysiglotg are compared with the exact nu- 1 numerics
merical results based on Ed) (solid lineg. Same normalization as 0.10 b
Fig. 3.
0.00 !
Fourth, as shown below, E¢L5) also admits an antisym- 0 L 2 3 4 5

metric solution, implying that a DM system can sustain the
propagation of a DM soliton of either even or odd parity. ~ FIG. 5. Amplitude distributiorfU,| at the midpoint of thenor-
The existence of an antisymmetric stationary pulse shape hasal fiber for various values of the nonlinear phase sliftThe
been predicted and numerically confirmed recently, using @redictions of Eqs(189 (dashed lingsand (18b) (dot9 are com-
different approachi16]. pared with the exact numerical results based on(Bg(solid lines.

The rest of this section is concerned with the accuracy oBame normalization as Fig. 3.
the perturbative analysis when compared with the results of
numerical simulations of a DM system based on @¢. We  bolic phase profile of fieldJ,, is accurately reproduced by
consider, as an example, a communication link with the folthe perturbative analysi$ig. 4b)].
lowing parameters: Li=L,=80km with Bs=—L85 In Figs. 3b) and 4a) and 4b), Egs.(18b and(19b) have
=10pg/km. The parametel,=11.35ps, implying that a been used, respectively. To better estimate the limits of the
conventional NLS soliton sechin the anomalous fiber validity of the analysis, Fig. 5 now compares the predictions
would have a FWHM:=1.763 T,=20ps. The normalized concerning the pulse shajpb(1/2,7) [Egs.(18a and(18b)]
length is then equal tb=6.21. with the exact numerical results for various value® ¢§imi-

As a first example, we consider a case where the nonlintar conclusions prevail for the pulse shapgs and U,,).
ear phase shifé=0.24. Figure 29) first depicts the spectral Although Eqgs.(189 and (18h) are equivalent, to first order
distribution ®(v) corresponding to the eigenvalue= 6/2 in 6, Eq. (18b) is clearly more accurate for describing the
=0.019 and obtained by solving E¢L5) numerically. A amplitudedistribution|U,|, even for relatively large phase
logarithmic plot[Fig. 2(b)] reveals the presence of numerous shifts 6. Equation(18b) is still, however, limited in accuracy
tiny sidelobes. Sidelobes also prevail in the temporal domaims it predicts aonuniformphase profile, as shown in Fig. 6;
when looking at the pulse profile at the midpoint of eachmore precisely, the perturbative result smooths out 4#he
fiber span, as shown in Fig. 3. The most notable feature ofhase steps at the zeros of the amplitude distributsme
Fig. 3 is certainly the good accuracy of the perturbationFig. 5(c)]. Higher-order perturbation terms would correct
analysis, as evidenced by the comparison between the exdtis. We note, though, that the phase in Fig. 6 is quasiuni-
numerical results based on Ed) (solid lineg and the pre- form in the central part of the pulse where most of the energy
dictions of Egs(16) and(18) (dots. The peak amplitude of is concentrated.
about 0.2 represents, in physical units, a peak power of 1.2 As mentioned above, it turns out that the integral equation
mW which is typical for a communication link. The predic- (15) also admits a solution afdd parity. For example, Fig. 7
tion at the fiber junctionEqg. (19)] is also well confirmed by displays the spectral distributiol(») and the pulse profile
the numerics, as seen in Fig. 4. In particular, the quasipardd,(7) for the same system parameters as above and for a
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FIG. 6. Phase profile at the midpoint of thermalfiber span as *  perturbative
predicted from Eq(18b) for the casefd=0.81. A constant phase 02
shift has been removed at the pulse center. The exact phase profile U |
is uniform except for ar phase step at the zeros of the amplitude 1

distribution. Same normalization as Fig. 3.

nonlinear phase shifé=0.24. Whereas the pulse shape in
Figs. 3 and 4 is, roughly speaking, Gaussian-like in its cen-
tral part, the odd-parity solution depicted in Fig. 7 can be
viewed as a distorted version of the next Hermite-Gauss
function. Figure 8 demonstrates that this pulse shape is ro-

0.1

FIG. 8. (a) Stroboscopic view of the long-haul propagatid®0

bust enough for propagating without further distortions overperiods of the dispersion mapf the antisymmetric DM soliton
thousands of kilometers. Figuréd represents another con- ajong the communication link. The simulation is based on @y.
firmation of the validity of the perturbative analysis. This and the pulse profile is shown at every ten perigtscomparison
result also supports the prediction of the existence of antibetween the launched pulégots corresponding to the perturbative
symmetric DM solitons based on an approximate ordinaryprediction shown in Fig. (b) and the pulse profile after a propaga-

differential equation for the DM soliton pulse shapks].

tion over 100 periodssolid line). The timer is in units of T.

Further simulations are being carried out in order to deter-
mine under which conditions the existence of this stationarypulse shape could be the subject of an experimental confir-

0.6
0.4
0.2
~ L
S o
S

-0.2
-0.4
-0.6 |-

<o F

FIG. 7. Antisymmetric DM soliton as predicted from the pertur-

mation. Let us mention for now that such simulations have

already indicated that, just as with conventional soliton sys-

tems, one can cope with the losses of a real link by a proper
boost of the input amplitude parameter in order to compen-
sate for the reduction of the path-averaged peak power. This
numerical analysis is in progress and the results will be de-
tailed elsewhere.

V. CONCLUSION

Adopting a coupled-field approach and limiting ourselves
to the stationary regime, we have analyzed dispersion man-
agement under zero-average dispersion conditions. Defining
appropriate boundary conditions and using a standard pertur-
bation analysis, a nonlinear integral equation has been de-
rived for the spectral distribution of the pulse at the midpoint
of each fiber, at the leading order. The analysis represents an
interesting alternative to the multiple-scale method; it also
easily includes higher-order correction terms that accurately
reproduce the difference in the pulse shapes in each fiber.

We believe that the proposed analysis is particularly well
suited for the determination of the critical parameSgr(cor-
responding to the zero-energy limisince it is based on the
asymptoticlinear limit and treats the nonlinearity as a small
perturbation. Most of the analysis here presented deals with
the symmetric case=1. However, the perturbative treat-
ment leading to Eq(15) can easily be repeated for the gen-

bative analysis(a) corresponding spectral distributiol(v); (b)

temporal profileU,; at the midpoint of theanomalousfiber span.
The parameters are the same as in Fig. 2. The frequeisciy units
of 1/Ty and the timer is scaled toT,. +

eral case # 1; one then finds that the integral equatid®)
still prevails, except for the minor modification—[(1
r)/2]x. According to the scaling law mentioned above,
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this implies that the critical paramet&;, evaluated in the agreement with Smitlet al. [21], we observed numerically

previous section does not depend on the map asymmetry, that many of the properties found for a lossless link can be

agreement with the recemtumerical results reported by recovered in the presence of loss by an appropriate increase

Bernstoret al.[20]. The analysis is, however, more involved in the launch power of the transmitter. This is, however,

at the next order of perturbation as E@lg then becomes system dependen(see, for example, Ref22], and refer-

inhomogeneous ences thereinand a separate analysis would be required for
Except for very small sidelobes, the spectral distributiona clear picture.

d(v) that satisfies the nonlinear integral equation and is de-

picted in Fig. 2 is approximatively Gaussian in shape. This

suggests the possibility of deriving an approximate analytical ACKNOWLEDGMENTS
solution to Eq.(15). This might be useful and is then the
subject of the current investigation. This research was supported by the Natural Science and
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