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Coupled-field description of zero-average dispersion management
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Using a coupled-field formalism and a standard perturbation analysis, we analyze a dispersion-managed
system under zero-average dispersion conditions. A nonlinear integral equation in the spectral domain allows
the determination of the critical strength parameter of a two-step dispersion map. Higher-order correction terms
confirm the difference observed in the pulse shapes in each fiber and comparisons with fully numerical results
reveal a good agreement. The existence of an antisymmetric dispersion-managed soliton is also confirmed.
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I. INTRODUCTION

The possibility of upgrading, at a reduced cost, alrea
installed standard fiber communication systems by hav
recourse to the technique of dispersion management has
idly attracted a great deal of attention@1,2#. Reduction of the
Gordon-Haus jitter@1–3# and the four-wave mixing crosstal
between the different channels of a wavelength-divisi
multiplexed system@4# are among the noteworthy features
this approach. However, the optimization of futu
dispersion-managed links still requires further numerical a
analytical modeling, as the so-called ‘‘dispersion-manag
~DM! soliton’’ reveals unusual properties when compar
with the conventional nonlinear Schro¨dinger ~NLS! soliton.
In particular, as discussed by various groups@5–12#, a DM
soliton can sustain stable propagation in a zero- or norm
average dispersion link, as long as the ‘‘map strength’’
rameter is above some critical valueScr @13#. A wavelength-
division-multiplexed communication system is likely
operate in both anomalous and normal dispersion regi
and the zero-average dispersion case can, therefore
viewed as an important frontier deserving further investi
tion. This is the subject of this paper.

In the linear limit, under total dispersion compensatio
the evolution of the intensity profile of the pulse is identic
in both fiber segments of a two-step dispersion map. T
suggests that a perturbative approach, based on the defin
of two dependent variables, one of them involving the sm
difference between the envelopes of the pulses in each fi
might prove fruitful. To exploit this observation, we the
introduce in this paper abilocal change of variables which i
reminiscent of a similar approach used thoroughly in
context of the quantum Hall-effect subject to a point cont
and in the Kondo model as well@14,15#, where it is referred
to as folding. Although this change of variables may loo
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simple, its nonlocality leads however to a nontrivial couple
field description of dispersion management. Our analy
shows that, at the leading order, the spectrum of the D
soliton obeys a nonlinear integral equation whose solut
can serve, for one, to extract the value of the critical para
eterScr . The next order of perturbation implies a differen
in the pulse profiles at the midpoint of each fiber segm
and this is well confirmed by the numerical simulation
More generally, the comparison with fully numerical resu
reveals an excellent agreement. The analysis also confi
the prediction based on another approach@16# concerning the
existence of anantisymmetricDM soliton.

The paper is organized as follows. In Sec. II, a couple
field description of dispersion management is introduced
the absence of exact analytical solutions, a perturba
analysis is then carried out in Sec. III, leading to a nonlin
integral equation for the spectral distribution. The results
discussed and compared with numerical simulations in S
IV. The solution of the integral equation is shown to allo
the determination of the critical parameterScr and the exis-
tence of an antisymmetric DM soliton is pointed out. A ge
eral discussion concludes the paper.

II. COUPLED-FIELD DESCRIPTION

We consider a two-step dispersion map~Fig. 1! which
consists of the periodic alternance of two fiber segments
length L j ( j 51,2) and dispersion parametersb2 j (b21
,0,b22.0). Considering a zero-average dispersion (b21L1
52b22L2), the propagation in the anomalous~first! and
normal~second! fiber segments is described by the nonline
Schrödinger ~NLS! equation:

i
]U1

]z1
1

1

2

]2U1

]t2 1uU1u2U150, ~1a!

:

FIG. 1. Schematic representation of a two-step dispersion m
4836 © 1999 The American Physical Society
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PRE 60 4837COUPLED-FIELD DESCRIPTION OF ZERO-AVERAGE . . .
i
]U2

]z2
2

1

2

]2U2

]t2 1r uU2u2U250. ~1b!

The scaled variableszj5Zj /LD j represent the propagatio
distances in terms of the local dispersion lengthsLD j

5T0
2/ub2 j u, T0 being a characteristic time scale; 0,zj, l ,

wherel 5L1 /LD1
5L2 /LD2

. The timet is in units ofT0 and
the fields are expressed in terms of the peak amplitude o
conventional NLS soliton that would propagate in t
anomalous fiber. The ratior 5(g2L2)/(g1L1) has been intro-
duced, whereg1,2 is the nonlinear parameter of the fiber
We restrict the present analysis to the lossless case.

In the stationary regime here considered, except for a
sidual uniform nonlinear phase shiftu, the pulse profile is
perfectly reproduced after each period of the map. Furth
more, the phase profile of the field is uniform at the midpo
of each fiber; without loss of generality, we then impose
real field at z15 l/2 ~this is further validated below!. The
governing Eqs.~1a!, ~1b! then imply that the fields satisfy
the following continuity and periodicity conditions:

U1~z150,t![U0~t!, ~2a!

U1~z15 l ,t!5U0* ~t!, ~2b!

U2~z250,t!5U1~z15 l ,t!5U0* ~t!, ~2c!

U2~z25 l ,t!5exp~ iu!U1~z150,t!5exp~ iu!U0~t!.
~2d!

The phase shiftu can be viewed as a signature of the no
linearity. Noting that in thelinear limit (u50) the fields in
each fiber are simply related byU2* (z25z,t)5U1(z1

5z,t), we then introduce, with a perturbative treatment
mind, the following change of variables:

c6~z,t![
U1~z,t!6U2* ~z,t!

2
. ~3!

We note an alternative interpretation of this transformati
since, in the same linear limit,U2( l 2z,t)5U2* (z,t), this
change of variables is strictly equivalent to a folding of t
first half of the map onto the second half and this evoke
similar technique used for analyzing quantum impurity pro
lems @14,15#. In these problems, the folding is allowed
uncover the integrability of the governing systems and t
was not so clear in the original formulation. Here, t
coupled system does not seem to be integrable altho
some conserved quantities can be found@17#.

The new set of variables makes it possible to analyze
problem in terms of two fields coupled over the comm
domain 0,z, l :

i
]c6

]z
1

1

2

]2c6

]t2 52
1

2
@~12r !~ uc6u2c612uc7u2c6

1c7
2 c6* !1~11r !~ uc7u2c7

12uc6u2c71c6
2 c7* !# ~4!

with the associated boundary conditions
he

e-

r-
t
a

-

;

a
-

s

gh

e

c1~z50!5U0 , ~5a!

c1~z5 l !5
@11exp~2 iu!#

2
U0* , ~5b!

c2~z50!50, ~5c!

c2~z5 l !5
@12exp~2 iu!#

2
U0* . ~5d!

The symmetric case (r 51) has received particular attentio
in the numerical work published so far. For this reason, a
also because of the resulting reduction in the complexity
Eq. ~4!, we first investigate that case. We briefly discuss
the caserÞ1 in the conclusion.

III. PERTURBATIVE ANALYSIS

To our knowledge, there is no exact analytical solution
the system~4!, ~5! that is of any relevance for the prese
analysis. However, in the regime of strong dispersion m
agement, the dispersion dominates~locally! over the nonlin-
earity. This implies that, typically, the amplitude is sma
uU0u!1, and this then suggests a perturbative analysis
terms of a small parameter, e.g.,«'uU0 maxu2. For this pur-
pose, we definec65A«V6 and U05A«V0 , with V6 and
V0 of order unity; we will return to the original variable
later on. Equation~4! ~with r 51) is then appropriately re
written as

i
]V6

]z
1

1

2

]2V6

]t2 1«~ uV7u2V712uV6u2V71V6
2 V7* !50.

~6!

We can now proceed with a standard perturbative anal
and expand the fieldsV6 and the phase shiftu as

V6~z,t!5V6
~0!~z,t!1«V6

~1!~z,t!1«2V6
2 ~z,t!1¯ ,

~7a!

u501«u11«2u21¯ . ~7b!

~The zero-order phase shift has been set to zero so as to
back on the correct linear limit.! The boundary condition
~5a!, combined with Eq.~7a!, then implies

V05V1~z50![V001«V011«2V021¯ . ~7c!

This simply expresses the fact that the pulse profile at
fiber junction, in the stationary state, is also power dep
dent. We limit the present investigation to the terms in«1. At
the leading order, the system is governed by the follow
linear homogeneous equations:

i
]V6

~0!

]z
1

1

2

]2V6
~0!

]t2 50, ~8!

subject to the boundary conditions@read off Eq.~5!#:

V1
~0!~0!5V00; V1

~0!~ l !5V00* ,

V2
~0!~0!50; V2

~0!~ l !50. ~9!
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It proves convenient to solve Eq.~8! in the spectral domain
For this purpose, we introduce the Fourier transformh̃(n)
5*h(t)exp(2i2pnt)dt. Then,

Ṽ2
~0!~z,n!50,

Ṽ1
~0!~z,n!5exp@2 i2p2n2~z2 l /2!#w~n!, ~10!

wherew~n! represents the spectrum ofV1
(0) at the midpoint

z5 l /2. At this order, the propagation is linear andany real
function w~n! will ensure that the boundary conditio

V1
(0)( l )5V1

(0)* (0) is satisfied. The selection appears at
next order where the equations to be solved read as

i
]V1

~1!

]z
1

1

2

]2V1
~1!

]t2 50, ~11a!

i
]V2

~1!

]z
1

1

2

]2V2
~1!

]t2 52uV1
~0!u2V1

~0! ~11b!

with the boundary conditions@read off Eq.~5!#:

V1
~1!~0!5V01; V1

~1!~ l !5V01* 2 i
u1

2
V00* ,

V2
~1!~0!50; V2

~1!~ l !5 i
u1

2
V00* . ~12!

By inspection, one finds that the first-order correction to
field V1 is given, in the spectral domain, by

Ṽ1
~1!~z,n!52 i

u1

4
Ṽ1

~0!~z,n!

52 i
u1

4
exp@2 i2p2n2~z2 l /2!#w~n!. ~13!

So, V0152 i (u1/4)V00. Still in the spectral domain, the in
homogeneous Eq.~11b! yields

Ṽ2
~1!~z,n!5

1

4p2

3exp@2 i2p2n2~z2 l /2!#E E dn1dn2

3
exp@ i4p2n1n2z#21

n1n2
exp@2 i2p2n1n2l #

3w~n1n1!w~n1n2!w~n1n11n2!, ~14!

where we have used the fact thatw is a real function. A
compatibility condition arises when one wants to satisfy
boundary condition forV2

(1)( l ) @Eq. ~12!#. This condition
translates into the selection of a particular solutionw ~or a
limited set! expressed mathematically in terms of a nonline
integral equation. Coming back to the original variables,
latter reads as
e

e

e

r
e

E E dn1dn2

sin@2p2ln1n2#

2p2ln1n2
F~n1n1!F~n1n2!

3F~n1n11n2!5lF~n!, ~15a!

whereF5A«w represents, at the leading order, the spec
profile of the fieldsU1,2 at z1,25 l /2. The eigenvaluel is
simply related to the nonlinear phase shift by

l5
u

2l
. ~15b!

Henceu, the nonlinear phase shift incurred over one peri
appears as a natural choice of parameter for characterizi
particular stationary DM soliton.

Equation~15!, combined with Eqs.~10!, ~13!, and ~14!,
allows the description of the fields in each fiber. We a
particularly interested in the pulse profile at the midpoint
each fiber and at their junction as well. Keeping terms in«1,
in the spectral domain these profiles are given by

~i! in the middle of the first~anomalous! fiber segment

Ũ1~z15 l /2,n!>F~n!1J~n!, ~16!

where

J~n![
1

2 E E dn1dn2

12cos@2p2ln1n2#

2p2ln1n2
F~n1n1!

3F~n1n2!F~n1n11n2!; ~17!

~ii ! in the middle of the second~normal! fiber segment

Ũ2~z25 l /2,n!>~11 iu/2!F~n!2J~n!, ~18a!

>exp~1 iu/2!F~n!2J~n!;
~18b!

~iii ! at the junction

Ũ12~n![Ũ1~z150,n!5Ũ2* ~z250,n!

>~12 iu/4!exp~1 ip2ln2!F~n!, ~19a!

>exp~2 iu/4!exp~1 ip2ln2!F~n!.
~19b!

On physical grounds, the change (11 iu/2)→exp(iu/2) in
Eq. ~18b! @and similarly for Eq.~19b!# is expected to im-
prove the accuracy of the approximate analysis as it corre
implies that the first-order correction due to the nonlinear
mostly consists in a phase shift and, from symmetry cons
erations, the latter should be half of the total shift incurr
over one complete period. This is well confirmed by t
numerical results reported below.

IV. DISCUSSION AND NUMERICAL EXAMPLES

Equations~15!–~19! call for a few comments. First, we
note that the nonlinear integral equation~15! is equivalent to
the recent result of Ablowitz and Biondini@18# who based
their analysis on the method of multiple scales@19#. We
believe that besides being rather straightforward for ana
ing the stationary state, the present analysis also has the
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PRE 60 4839COUPLED-FIELD DESCRIPTION OF ZERO-AVERAGE . . .
efit of easily providing expressions for the next order of p
turbation. This higher-order correction demonstrat
according to Eqs.~16! and ~18!, the nonlinearity-induced
asymmetry observed in the evolution of the pulse in the t
fibers.

Second, one can notice that Eq.~16! correctly predicts a
real field at the midpoint of the anomalous fiber, as assum
in the derivation of Eq.~15!. Equation~18!, however, implies
a small nonuniformity of the phase profile at the center of
second fiber. A proper inclusion of higher-order terms wo
remedy this.

Third, as pointed out by Ablowitz and Biondini@18#, Eq.
~15! obeys a scaling rule: if, for a given normalized leng
l 1 ,F1(n) is a solution of Eq.~15! with an eigenvaluel1 ,
then a new parameterl 25a l 1 will yield F2(n)
5bF1(Aan) as a solution, with the eigenvaluel2
5(b2/a)l1 , b being an arbitrary factor. The phase shi
associated with these two solutions are then related byu2
5b2u1 , the full width half maximum~FWHM! of the tem-
poral intensity distribution at the midpoint of the anomalo
fiber t1/2 by (t1/2)25Aa(t1/2)1 and the pulse energyE scales
as E25(b2/Aa)E1 . In terms of the so-called ‘‘map
strength’’ parameter S, here equal toS52ub21uL1 /t1/2

2

52l (T0 /t1/2)
2 @this parameter was introduced by Smi

et al. @1,8,10# and the reader is referred to that work for
discussion of its physical meaning; in the present symme
case, one can notice that it is directly related to the ra
~fiber segment length!/~dispersion length! and thus gives an
idea of the importance of the linearly induced pulse bro
ening in each fiber#, this scaling law implies that, at thi
order, the solutions corresponding to different energies

FIG. 2. ~a! Spectral distributionF~n! corresponding to the ei
genvaluel50.019~see text!. ~b! Same as~a! but on a logarithmic
scale. The parameters areb2252b21510 ps2/km; L15L2580 km
and the nonlinear phase shift isu50.24. The frequencyn is in units
of 1/T0 .
-
,
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d

e
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characterized by thesame strength parameter (S25S1).
Since this order of approximation corresponds to the qu
linear limit, this implies that in the diagram of the puls
energyE vs S, the corresponding points approach theS axis
vertically at a value representing the critical parameterS2
5S1[Scr). In the zero-energy limit~total absence of nonlin-
ear effects!, any pulse profile is perfectly reproduced afte
each period; in other words, any point on theSaxis is then a
solution. Introducing a small nonlinearity (EÞ0) leads to
the selection of a particular point on theSaxis located atScr
so that the latter, in this sense, can be viewed as a bifurca
point. The impact of the nonlinearity generally depends
the pulse shape and it is only for a particular pulse pro
that the path-averaged interplay between dispersion and
linearity simply results in a uniform phase shift of the pul
spectrum after each period.~Further discussion on the phys
cal interpretation of the critical parameter can be found
Ref. @10#.! To determine the value of the critical paramete
we solved the integral equation~15! numerically, using an
iterative scheme with a proper renormalization step to ens
a quick convergence to the solution~further details will be
given elsewhere!. The FWHM of the temporal intensity dis
tribution, given by the square of the Fourier transform
F~n!, implies a critical valueScr>3.76. @This is in good
agreement with the approximate value of 3.9 reported
Bernstonet al. @8,13,20# and apparently extrapolated from
purely numerical results—based on Eq.~1!—obtained for
low, but finite, energy. We also note that the fact that t
strength parameter involves the square of the inverse of
FWHM makes it strongly dependent on the pulse shape.# As
pointed out in Sec. V, this value does not depend on the r
r.

FIG. 3. Temporal distributionsuU1u ~a! anduU2u ~b! at the mid-
point of each fiber for the caseu50.24. The predictions of the
perturbative analysis~dots! are compared with the exact numeric
results based on Eq.~1! ~solid lines!. The timet is in units ofT0 .
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4840 PRE 60PARÉ, ROY, LESAGE, MATHIEU, AND BÉLANGER
Fourth, as shown below, Eq.~15! also admits an antisym
metric solution, implying that a DM system can sustain t
propagation of a DM soliton of either even or odd pari
The existence of an antisymmetric stationary pulse shape
been predicted and numerically confirmed recently, usin
different approach@16#.

The rest of this section is concerned with the accuracy
the perturbative analysis when compared with the result
numerical simulations of a DM system based on Eq.~1!. We
consider, as an example, a communication link with the
lowing parameters: L15L2580 km with b2252b21
510 ps2/km. The parameterT0511.35 ps, implying that a
conventional NLS soliton secht in the anomalous fibe
would have a FWHM51.763 T0520 ps. The normalized
length is then equal tol 56.21.

As a first example, we consider a case where the non
ear phase shiftu50.24. Figure 2~a! first depicts the spectra
distribution F~n! corresponding to the eigenvaluel5u/2l
50.019 and obtained by solving Eq.~15! numerically. A
logarithmic plot@Fig. 2~b!# reveals the presence of numero
tiny sidelobes. Sidelobes also prevail in the temporal dom
when looking at the pulse profile at the midpoint of ea
fiber span, as shown in Fig. 3. The most notable feature
Fig. 3 is certainly the good accuracy of the perturbat
analysis, as evidenced by the comparison between the e
numerical results based on Eq.~1! ~solid lines! and the pre-
dictions of Eqs.~16! and~18! ~dots!. The peak amplitude o
about 0.2 represents, in physical units, a peak power of
mW which is typical for a communication link. The predic
tion at the fiber junction@Eq. ~19!# is also well confirmed by
the numerics, as seen in Fig. 4. In particular, the quasip

FIG. 4. Temporal distribution at the junction of the fibers for t
caseu50.24 ~a! amplitude profileuU12u; ~b! phase profile~a uni-
form phase has been removed at the pulse center!. The predictions
of the perturbative analysis~dots! are compared with the exact nu
merical results based on Eq.~1! ~solid lines!. Same normalization as
Fig. 3.
e
.
as
a

f
of

l-

n-

in

of
n
act

.2

a-

bolic phase profile of fieldU12 is accurately reproduced b
the perturbative analysis@Fig. 4~b!#.

In Figs. 3~b! and 4~a! and 4~b!, Eqs.~18b! and~19b! have
been used, respectively. To better estimate the limits of
validity of the analysis, Fig. 5 now compares the predictio
concerning the pulse shapeU2( l /2,t) @Eqs.~18a! and~18b!#
with the exact numerical results for various values ofu ~simi-
lar conclusions prevail for the pulse shapesU1 and U12).
Although Eqs.~18a! and ~18b! are equivalent, to first orde
in u, Eq. ~18b! is clearly more accurate for describing th
amplitudedistribution uU2u, even for relatively large phas
shiftsu. Equation~18b! is still, however, limited in accuracy
as it predicts anonuniformphase profile, as shown in Fig. 6
more precisely, the perturbative result smooths out thep
phase steps at the zeros of the amplitude distribution@see
Fig. 5~c!#. Higher-order perturbation terms would corre
this. We note, though, that the phase in Fig. 6 is quasiu
form in the central part of the pulse where most of the ene
is concentrated.

As mentioned above, it turns out that the integral equat
~15! also admits a solution ofoddparity. For example, Fig. 7
displays the spectral distributionF~n! and the pulse profile
U1(t) for the same system parameters as above and f

FIG. 5. Amplitude distributionuU2u at the midpoint of thenor-
mal fiber for various values of the nonlinear phase shiftu. The
predictions of Eqs.~18a! ~dashed lines! and ~18b! ~dots! are com-
pared with the exact numerical results based on Eq.~1! ~solid lines!.
Same normalization as Fig. 3.
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PRE 60 4841COUPLED-FIELD DESCRIPTION OF ZERO-AVERAGE . . .
nonlinear phase shiftu50.24. Whereas the pulse shape
Figs. 3 and 4 is, roughly speaking, Gaussian-like in its c
tral part, the odd-parity solution depicted in Fig. 7 can
viewed as a distorted version of the next Hermite-Ga
function. Figure 8 demonstrates that this pulse shape is
bust enough for propagating without further distortions o
thousands of kilometers. Figure 8~b! represents another con
firmation of the validity of the perturbative analysis. Th
result also supports the prediction of the existence of a
symmetric DM solitons based on an approximate ordin
differential equation for the DM soliton pulse shape@16#.
Further simulations are being carried out in order to de
mine under which conditions the existence of this station

FIG. 6. Phase profile at the midpoint of thenormalfiber span as
predicted from Eq.~18b! for the caseu50.81. A constant phase
shift has been removed at the pulse center. The exact phase p
is uniform except for ap phase step at the zeros of the amplitu
distribution. Same normalization as Fig. 3.

FIG. 7. Antisymmetric DM soliton as predicted from the pertu
bative analysis.~a! corresponding spectral distributionF~n!; ~b!
temporal profileU1 at the midpoint of theanomalousfiber span.
The parameters are the same as in Fig. 2. The frequencyn is in units
of 1/T0 and the timet is scaled toT0 .
-

s
o-
r

i-
y

r-
ypulse shape could be the subject of an experimental co
mation. Let us mention for now that such simulations ha
already indicated that, just as with conventional soliton s
tems, one can cope with the losses of a real link by a pro
boost of the input amplitude parameter in order to comp
sate for the reduction of the path-averaged peak power. T
numerical analysis is in progress and the results will be
tailed elsewhere.

V. CONCLUSION

Adopting a coupled-field approach and limiting ourselv
to the stationary regime, we have analyzed dispersion m
agement under zero-average dispersion conditions. Defi
appropriate boundary conditions and using a standard pe
bation analysis, a nonlinear integral equation has been
rived for the spectral distribution of the pulse at the midpo
of each fiber, at the leading order. The analysis represent
interesting alternative to the multiple-scale method; it a
easily includes higher-order correction terms that accura
reproduce the difference in the pulse shapes in each fibe

We believe that the proposed analysis is particularly w
suited for the determination of the critical parameterScr ~cor-
responding to the zero-energy limit!, since it is based on the
asymptoticlinear limit and treats the nonlinearity as a sma
perturbation. Most of the analysis here presented deals
the symmetric caser 51. However, the perturbative trea
ment leading to Eq.~15! can easily be repeated for the ge
eral caserÞ1; one then finds that the integral equation~15!
still prevails, except for the minor modificationl→@(1
1r )/2#l. According to the scaling law mentioned abov

file

FIG. 8. ~a! Stroboscopic view of the long-haul propagation~100
periods of the dispersion map! of the antisymmetric DM soliton
along the communication link. The simulation is based on Eq.~1!
and the pulse profile is shown at every ten periods;~b! comparison
between the launched pulse~dots! corresponding to the perturbativ
prediction shown in Fig. 7~b! and the pulse profile after a propag
tion over 100 periods~solid line!. The timet is in units ofT0 .
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this implies that the critical parameterScr evaluated in the
previous section does not depend on the map asymmetr
agreement with the recentnumerical results reported by
Bernstonet al. @20#. The analysis is, however, more involve
at the next order of perturbation as Eq.~11a! then becomes
inhomogeneous.

Except for very small sidelobes, the spectral distribut
F~n! that satisfies the nonlinear integral equation and is
picted in Fig. 2 is approximatively Gaussian in shape. T
suggests the possibility of deriving an approximate analyt
solution to Eq.~15!. This might be useful and is then th
subject of the current investigation.

As most of the mathematical analyses reported so far
this problem, the present contribution assumed a loss
link. Besides being a common natural first step, this can a
be justified by pointing out, as briefly done above, that
J.
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agreement with Smithet al. @21#, we observed numerically
that many of the properties found for a lossless link can
recovered in the presence of loss by an appropriate incr
in the launch power of the transmitter. This is, howev
system dependent~see, for example, Ref.@22#, and refer-
ences therein! and a separate analysis would be required
a clear picture.
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